Random Regressors and Moment Based Estimation

Chapter 10

Chapter 10: Random Regressors and Moment Based Estimation

- 10.1 Linear Regression with Random x 's
- 10.2 Cases in Which x and e are Correlated
- 10.3 Estimators Based on the Method of Moments
- 10.4 Specification Tests

Chapter 10: Random Regressors and Moment Based Estimation

The assumptions of the simple linear regression are:

- SR1. $y_{i}=\beta_{1}+\beta_{2} x_{i}+e_{i} \quad i=1, \ldots, N$
- SR2. $E\left(e_{i}\right)=0$
- SR3. $\operatorname{var}\left(e_{i}\right)=\sigma^{2}$
- SR4. $\operatorname{cov}\left(e_{i}, e_{j}\right)=0$
- SR5. The variable x_{i} is not random, and it must take at least two different values.
- SR6. (optional) $e_{i} \sim N\left(0, \sigma^{2}\right)$

Chapter 10: Random Regressors and Moment Based Estimation

The purpose of this chapter is to discuss regression models in which
x_{i} is random and correlated with the error term e_{i}. We will:

- Discuss the conditions under which having a random x is not a problem, and how to test whether our data satisfies these conditions.
- Present cases in which the randomness of x causes the least squares estimator to fail.
- Provide estimators that have good properties even when x_{i} is random and correlated with the error e_{i}.
Principles of Econometrics, 3rd Edition
10.1 Linear Regression With Random X's
- A10.1
$y_{i}=\beta_{1}+\beta_{2} x_{i}+e_{i}$ correctly describes the relationship between y_{i} and x_{i} in the population, where β_{1} and β_{2} are unknown (fixed) parameters and e_{i} is an unobservable random error term.
- A10.2 The data pairs $\left(x_{i}, y_{i}\right) \quad i=1, \ldots, N$, are obtained by random sampling. That is, the data pairs are collected from the same population, by a process in which each pair is independent of every other pair. Such data are said to be independent and identically distributed.
Principles of Econometrics, 3rd Edition Slide 10-5
10.1 Linear Regression With Random X's
- A10.3 $E\left(e_{i} \mid x_{i}\right)=0$. The expected value of the error term e_{i}, conditional on the value of x_{i}, is zero.

This assumption implies that we have (i) omitted no important variables, (ii) used the correct functional form, and (iii) there exist no factors that cause the error term e_{i} to be correlated with x_{i}.

If $E\left(e_{i} \mid x_{i}\right)=0$, then we can show that it is also true that x_{i} and e_{i} are uncorrelated, and that $\operatorname{cov}\left(x_{i}, e_{i}\right)=0$.

Conversely, if x_{i} and e_{i} are correlated, then $\operatorname{cov}\left(x_{i}, e_{i}\right) \neq 0$ and we can show that $E\left(e_{i} \mid x_{i}\right) \neq 0$.

Principles of Econometrics, 3nd Edition Slide 10-6

10.1.1 The Small Sample Properties of the OLS Estimator

- Under assumptions A10.1-A10.6 the distributions of the least squares estimators, conditional upon the x 's, are normal, and their variances are estimated in the usual way. Consequently the usual interval estimation and hypothesis testing procedures are valid.
101.2 Asymptotic Properties of the OLS Estimator: X Not Random

Figure 10.1 An illustration of consistency

Principles of Econometrics, 3rd Edition
Slide 10-10

10.1.2 Asymptotic Properties of the OLS Estimator: X Not Random

Remark: Consistency is a "large sample" or "asymptotic" property. We have stated another large sample property of the least squares estimators in Chapter 2.6. We found that even when the random errors in a regression model are not normally distributed, the least squares estimators still have approximate normal distributions if the sample size N is large enough. How large must the sample size be for these large sample properties to be valid approximations of reality? In a simple regression 50 observations might be enough. In multiple regression models the number might be much higher, depending on the quality of the data.

10.1.3 Asymptotic Properties of the OLS

 Estimator: X Random```
- A10.3* }E(\mp@subsup{e}{i}{})=0\mathrm{ and cov ((x, , e})=
 E(\mp@subsup{e}{i}{}|\mp@subsup{x}{i}{})=0=>\operatorname{cov}(\mp@subsup{x}{i}{},\mp@subsup{e}{i}{})=0
 E(\mp@subsup{e}{i}{}|\mp@subsup{x}{i}{})=0=>E(\mp@subsup{e}{i}{})=0
```


### 10.1.3 Asymptotic Properties of the OLS Estimator: X Random

- Under assumption A10.3* the least squares estimators are consistent. That is, they converge to the true parameter values as $N \rightarrow \infty$.
- Under assumptions A10.1, A10.2, A10.3*, A10.4 and A10.5, the least squares estimators have approximate normal distributions in large samples, whether the errors are normally distributed or not.
Furthermore our usual interval estimators and test statistics are valid,
if the sample is large.


## 10-1.3 Asymptotic Properties of the OLS

 Estimator: X Random- If assumption A10.3* is not true, and in particular if $\operatorname{cov}\left(x_{i}, e_{i}\right) \neq 0$
so that $x_{i}$ and $e_{i}$ are correlated, then the least squares estimators are
inconsistent. They do not converge to the true parameter values
even in very large samples. Furthermore, none of our usual
hypothesis testing or interval estimation procedures are valid.


### 10.1.4 Why OLS Fails



Figure 10.2 Plot of correlated $x$ and $e$
Principles of Economerrics, 3rd Edition Slide 10-15

### 10.1.4 Why OLS Fails

$$
\begin{gathered}
y=E(y)+e=\beta_{1}+\beta_{2} x+e=1+1 \times x+e \\
\hat{y}=b_{1}+b_{2} x=.9789+1.7034 x
\end{gathered}
$$

10.1.4 Why OLS Fails


Figure 10.3 Plot of data, true and fitted regressions

### 10.2 Cases in Which $X$ and e Are Correlated

When an explanatory variable and the error term are correlated the explanatory variable is said to be endogenous and means
"determined within the system." When an explanatory variable is correlated with the regression error one is said to have an
"endogeneity problem."

Slide 10-18


### 10.2.1 Measurement Error

$$
\begin{aligned}
y_{i} & =\beta_{1}+\beta_{2} x_{i}^{*}+v_{i} \\
& =\beta_{1}+\beta_{2}\left(x_{i}-u_{i}\right)+v_{i} \\
& =\beta_{1}+\beta_{2} x_{i}+\left(v_{i}-\beta_{2} u_{i}\right) \\
& =\beta_{1}+\beta_{2} x_{i}+e_{i}
\end{aligned}
$$

10.2.1 Measurement Error

$$
\begin{aligned}
\operatorname{cov}\left(x_{i}, e_{i}\right) & =E\left(x_{i} e_{i}\right)=E\left[\left(x_{i}^{*}+u_{i}\right)\left(v_{i}-\beta_{2} u_{i}\right)\right] \\
& =E\left(-\beta_{2} u_{i}^{2}\right)=-\beta_{2} \sigma_{u}^{2} \neq 0
\end{aligned}
$$

10.2.2 Omitted Variables

$$
\begin{equation*}
W A G E_{i}=\beta_{1}+\beta_{2} E D U C_{i}+e_{i} \tag{10.5}
\end{equation*}
$$

Omitted factors: experience, ability and motivation.
Therefore, we expect that $\operatorname{cov}\left(E D U C_{i}, e_{i}\right) \neq 0$.

Principles of Econometrics, 3rd Edition
Slide 10-22
10.2.3 Simultaneous Equations Bias

$$
Q_{i}=\beta_{1}+\beta_{2} P_{i}+e_{i}
$$

There is a feedback relationship between $P_{i}$ and $Q_{i}$. Because of this feedback, which results because price and quantity are jointly, or simultaneously, determined, we can show that $\operatorname{cov}\left(P_{i}, e_{i}\right) \neq 0$.
The resulting bias (and inconsistency) is called the simultaneous
equations bias.

Principles of Econometrics, 3rd Edition
10.2.4 Lagged Dependent Variable Models with Serial Correlation

$$
\begin{gathered}
y_{t}=\beta_{1}+\beta_{2} y_{t-1}+\beta_{3} x_{t}+e_{t} \\
\operatorname{AR}(1) \text { process: } e_{t}=\rho e_{t-1}+v_{t}
\end{gathered}
$$

If $\rho \neq 0$ there will be correlation between $y_{t-1}$ and $e_{t}$.
In this case the least squares estimator applied to the lagged dependent variable model will be biased and inconsistent.

### 10.3 Estimators Based on the Method of Moments

When all the usual assumptions of the linear model hold, the method of moments leads us to the least squares estimator. If $x$ is random and correlated with the error term, the method of moments leads us to an alternative, called instrumental variables estimation, or two-stage
least squares estimation, that will work in large samples.
10.3.1 Method of Moments Estimation of a Population Mean and Variance

$$
E\left(Y^{k}\right)=\mu_{k}=k^{\text {th }} \text { moment of } Y
$$



$$
E\left(Y^{k}\right)=\hat{\mu}_{k}=k^{\text {th }} \text { sample moment of } Y=\sum y_{i}^{k} / N
$$

$$
\operatorname{var}(Y)=\sigma^{2}=E(Y-\mu)^{2}=E\left(Y^{2}\right)-\mu^{2}
$$

10.3.2 Method of Moments Estimation in the Simple Linear Regression Model

$$
E\left(e_{i}\right)=0 \Rightarrow E\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)=0
$$

$$
\begin{equation*}
E\left(x_{i} e_{i}\right)=0 \Rightarrow E\left[x_{i}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)\right]=0 \tag{10.14}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{1}{N} \sum\left(y_{i}-b_{1}-b_{2} x_{i}\right)=0 \\
& \frac{1}{N} \sum x_{i}\left(y_{i}-b_{1}-b_{2} x_{i}\right)=0
\end{aligned}
$$

$\frac{1}{N} \sum\left(y_{i}-b_{1}-b_{2} x_{i}\right)=0$
$\frac{1}{N} \sum x_{i}\left(y_{i}-b_{1}-b_{2} x_{i}\right)=0$
(10.15)
$\tilde{\sigma}^{2}=\hat{\mu}_{2}-\hat{\mu}^{2}=\frac{\sum y_{i}^{2}}{N}-\bar{y}^{2}=\frac{\sum y_{i}^{2}-N \bar{y}^{2}}{N}=\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{N}$
(10.12)
10.3.2 Method of Moments Estimation in the Simple Linear Regression Model

$$
\begin{aligned}
& b_{2}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \\
& b_{1}=\bar{y}-b_{2} \bar{x}
\end{aligned}
$$

Under "nice" assumptions, the method of moments principle of
estimation leads us to the same estimators for the simple linear
regression model as the least squares principle.
10.3.3 Instrumental Variables Estimation in the Simple Linear Regression Model

[^0]10.3.3 Instrumental Variables Estimation in the Simple Linear Regression Model
$$
\hat{\beta}_{2}=\frac{N \sum z_{i} y_{i}-\sum z_{i} \sum y_{i}}{N \sum z_{i} x_{i}-\sum z_{i} \sum x_{i}}=\frac{\sum\left(z_{i}-\bar{z}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(z_{i}-\bar{z}\right)\left(x_{i}-\bar{x}\right)}
$$
\[

$$
\begin{align*}
& \frac{1}{N} \sum\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)=0  \tag{10.18}\\
& \frac{1}{N} \sum z_{i}\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)=0
\end{align*}
$$
\]

$$
\hat{\beta}_{1}=\bar{y}-\hat{\beta}_{2} \bar{x}
$$

### 10.3.3 Instrumental Variables Estimation in the Simple Linear Regression Model

[^1] approximate normal distributions. In the simple regression model
\[

$$
\begin{equation*}
\hat{\beta}_{2} \sim N\left(\beta_{2}, \frac{\sigma^{2}}{r_{z x}^{2} \sum\left(x_{i}-\bar{x}\right)^{2}}\right) \tag{10.19}
\end{equation*}
$$

\]

Principles of Economertics, 3rd Edition Slide 10-33
10.3.3 Instrumental Variables Estimation in the Simple Linear Regression Model


#### Abstract

- The error variance is estimated using the estimator $$
\hat{\sigma}_{I V}^{2}=\frac{\sum\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)^{2}}{N-2}
$$

Principles of Econometrics, 3rd Edition Slide 10-34


### 10.3.3a The importance of using strong

 instruments$$
\operatorname{var}\left(\hat{\beta}_{2}\right)=\frac{\sigma^{2}}{r_{z x}^{2} \sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\operatorname{var}\left(b_{2}\right)}{r_{z x}^{2}}
$$

Using the instrumental variables estimation procedure when it is not required leads to wider confidence intervals, and less precise
inference, than if least squares estimation is used.
The bottom line is that when instruments are weak instrumental
variables estimation is not reliable.
10.3.36 An IIfustration Using Simulated Data

$$
\begin{array}{ll}
\hat{y}_{O L S}=.9789+1.7034 x & \hat{y}_{I V_{-} z_{1}}=1.1011+1.1924 x \\
(\mathrm{se}) \quad(.088) \quad(.090) & (\mathrm{se}) \quad(.109) \quad(.195) \\
\\
\hat{y}_{I V_{-} z_{2}}=1.3451+.1724 x & \hat{y}_{I V_{-} z_{3}}=.9640+1.7657 x \\
(\mathrm{se}) \quad(.256) \quad(.797) & (\mathrm{se}) \quad(.095) \quad(.172)
\end{array}
$$


10.3.3c An IIUstration Using a Wage Equation

| $\begin{aligned} E D U C= & 9.7751+.0489 \times E X P E R-.0013 \times \text { EXPER }^{2}+.2677 \times \text { MOTHEREDUC } \\ (\mathrm{se}) & (.4249)(.0417) \end{aligned}$ |
| :---: |
| $\begin{aligned} & \ln (W A G E)= \\ & \quad .1982+.0493 \times E D U C+.0449 \times E X P E R-.0009 \times E X P E R^{2} \\ & \quad(\mathrm{se}) \quad(.4729)(.0374) \end{aligned}$ |
| Principles of Econometrics, 3rd Edition $\quad$ Slide 10-38 |

10.3.4 Instrumental Variables Estimation With Surplus Instruments

$$
\begin{aligned}
& E\left(w_{i} e_{i}\right)=E\left[w_{i}\left(y_{i}-\beta_{1}-\beta_{2} x_{i}\right)\right]=0 \\
& \frac{1}{N} \sum\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)=\hat{m}_{1}=0 \\
& \frac{1}{N} \sum z_{i}\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)=\hat{m}_{2}=0 \\
& \frac{1}{N} \sum w_{i}\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)=\hat{m}_{3}=0
\end{aligned}
$$

10.3.4 Instrumental Variables Estimation With Surplus Instruments

A 2-step process.

- Regress $x$ on a constant term, $z$ and $w$, and obtain the predicted values $\hat{x}$.
- Use $\hat{x}$ as an instrumental variable for $x$.
10.3.4 Instrumental Variables Estimation
With Surplus Instruments

$$
\begin{aligned}
& \frac{1}{N} \sum\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)=0 \\
& \frac{1}{N} \sum \hat{x}_{i}\left(y_{i}-\hat{\beta}_{1}-\hat{\beta}_{2} x_{i}\right)=0
\end{aligned}
$$

10.3.4 Instrumental Variables Estimation With Surplus Instruments

Two-stage least squares (2SLS) estimator:

- Stage 1 is the regression of $x$ on a constant term, $z$ and $w$, to obtain the predicted values $\hat{x}$. This first stage is called the reduced form model estimation.
- Stage 2 is ordinary least squares estimation of the simple linear regression

$$
y_{i}=\beta_{1}+\beta_{2} \hat{x}_{i}+\text { error }_{i}
$$

10.3.4 Instrumental Variables Estimation With Surplus Instruments

$$
\begin{aligned}
& \hat{\beta}_{2}=\frac{\sum\left(\hat{x}_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(\hat{x}_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)}=\frac{\sum\left(\hat{x}_{x}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(\hat{x}_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)} \\
& \hat{\beta}_{1}=\bar{y}-\hat{\beta}_{2} \bar{x}
\end{aligned}
$$

10.3.4 Instrumental Variables Estimation With Surplus Instruments


10.3.46 An Iflustration Using a Wage Equation

| Table 10.1 | Reduced Form Equation |  |  |  |
| :--- | :---: | :---: | ---: | :---: |
| Variable | Cocfficient | Std. Error | $t$-Statistic | Prob. |
| C | 9.1026 | 0.4266 | 21.3396 | 0.0000 |
| EXPER | 0.0452 | 0.0403 | 1.1236 | 0.2618 |
| EXPER2 | -0.0010 | 0.0012 | -0.8386 | 0.4022 |
| MOTHEREDUC | 0.1576 | 0.0359 | 4.3906 | 0.0000 |
| FATHEREDUC | 0.1895 | 0.0338 | 5.6152 | 0.0000 |


10.3.5 Instrumental Variables Estimation in a General Model


### 10.3.5 Instrumental Variables Estimation in a Ceneral Model <br> $$
\begin{array}{r} \hat{x}_{G+j}=\hat{\gamma}_{1 j}+\hat{\gamma}_{2 j} x_{2}+\cdots+\hat{\gamma}_{G j} x_{G}+\hat{\theta}_{1 j} z_{1}+\cdots+\hat{\theta}_{L j} z_{L}, \\ j=1, \ldots, B \end{array}
$$

$y=\beta_{1}+\beta_{2} x_{2}+\cdots \beta_{G} x_{G}+\beta_{G+1} \hat{x}_{G+1}+\cdots+\beta_{K} \hat{x}_{K}+$ error (10.30)

### 10.3.5a Hypothesis Testing with Instrumental

 Variables EstimatesWhen testing the null hypothesis $H_{0}: \beta_{k}=c$ use of the test statistic $t=\left(\hat{\boldsymbol{\beta}}_{k}-c\right) / \mathrm{se}\left(\hat{\boldsymbol{\beta}}_{k}\right)$ is valid in large samples. It is common, but not universal, practice to use critical values, and $p$-values, based on the distribution rather than the more strictly appropriate $N(0,1)$ distribution. The reason is that tests based on the $t$-distribution tend to work better in samples of data that are not large.

Principles of Econometrics, 3rd Edition Slide 10-50

### 10.3.5a Hypothesis Testing with Instrumental Voriables Estimates

When testing a joint hypothesis, such as $H_{0}: \beta_{2}=c_{2}, \beta_{3}=c_{3}$, the test may be based on the chi-square distribution with the number of degrees of freedom equal to the number of hypotheses $(J)$ being tested. The test itself may be called a "Wald" test, or a likelihood ratio $(L R)$ test, or a Lagrange multiplier ( $L M$ ) test. These testing procedures are all asymptotically equivalent .

### 10.3.56 Goodness of Fit with Instrumental

 Variables Estimates$$
\begin{aligned}
& y=\beta_{1}+\beta_{2} x+e \\
& \hat{e}=y-\hat{\beta}_{1}-\hat{\beta}_{2} x \\
& R^{2}=1-\sum \hat{e}_{i}^{2} / \sum\left(y_{i}-\bar{y}\right)^{2}
\end{aligned}
$$

Unfortunately $\mathrm{R}^{2}$ can be negative when based on $I V$ estimates.
Therefore the use of measures like $R^{2}$ outside the context of the least squares estimation should be avoided.

### 10.4 Specification Tests

- Can we test for whether $x$ is correlated with the error term? This might give us a guide of when to use least squares and when to use $I V$ estimators.
- Can we test whether our instrument is sufficiently strong to avoid the problems associated with "weak" instruments?
- Can we test if our instrument is valid, and uncorrelated with the regression error, as required?
10.4.1 The Hausman Test for Endogeneity

$$
H_{0}: \operatorname{cov}\left(x_{i}, e_{i}\right)=0 \quad H_{1}: \operatorname{cov}\left(x_{i}, e_{i}\right) \neq 0
$$

- If the null hypothesis is true, both the least squares estimator and the instrumental variables estimator are consistent. Naturally if the null hypothesis is true, use the more efficient estimator, which is the least squares estimator.
- If the null hypothesis is false, the least squares estimator is not consistent, and the instrumental variables estimator is consistent. If the null hypothesis is not true, use the instrumental variables estimator, which is consistent.


### 10.4.1 The Hausman Test for Endogeneity

$y_{i}=\beta_{1}+\beta_{2} x_{i}+e_{i}$
Let $z_{1}$ and $z_{2}$ be instrumental variables for $x$.
Estimate the model $x_{i}=\gamma_{1}+\theta_{1} z_{i 1}+\theta_{2} z_{i 2}+v_{i}$ by least squares, and obtain the residuals $\hat{v}_{i}=x_{i}-\hat{\gamma}_{1}-\hat{\theta}_{1} z_{i 1}-\hat{\theta}_{2} z_{i 2}$. If there are more than one explanatory variables that are being tested for endogeneity, repeat this estimation for each one, using all available instrumental variables in each regression.

### 10.4.1 The Hausman Test for Endogeneity

Include the residuals computed in step 1 as an explanatory variable in the original regression, $y_{i}=\beta_{1}+\beta_{2} x_{i}+\delta \hat{v}_{i}+e_{i}$. Estimate this "artificial regression" by least squares, and employ the usual $t$-test for the hypothesis of significance

$$
\begin{aligned}
& H_{0}: \delta=0\left(\text { no correlation between } x_{i} \text { and } e_{i}\right) \\
& H_{1}: \delta \neq 0\left(\text { correlation between } x_{i} \text { and } e_{i}\right)
\end{aligned}
$$

10.4.1 The Hausman Test for Endogeneity

If more than one variable is being tested for endogeneity, the test will be an $F$-test of joint significance of the coefficients on the included residuals.
10.4.2 Testing for Weak Instruments

$$
\begin{gathered}
y=\beta_{1}+\beta_{2} x_{2}+\cdots+\beta_{G} x_{G}+\beta_{G+1} x_{G+1}+e \\
x_{G+1}=\gamma_{1}+\gamma_{2} x_{2}+\cdots+\gamma_{G} x_{G}+\theta_{1} z_{1}+v
\end{gathered}
$$

If we have $L>1$ instruments available then the reduced form equation is

$$
x_{G+1}=\gamma_{1}+\gamma_{2} x_{2}+\cdots+\gamma_{G} x_{G}+\theta_{1} z_{1}+\cdots \theta_{L} z_{L}+v
$$

Principles of Econometrics, 3rd Edition

### 10.4.3 Testing Instrument Validity

[^2]
### 10.4.4 Numerical Examples Using Simulated Data

### 10.4.4a The Hausman Test

$$
\hat{v}=x-\hat{x}=x-.1947-.5700 z_{1}-.2068 z_{2}
$$

$$
\begin{aligned}
& \hat{y}=1.1376+1.0399 x+.9957 \hat{v} \\
& \text { (se) }(.080)(.133)
\end{aligned}
$$

10.4.4 Numerical Examples Using Simulated Data

- 10.4.4b Test for Weak Instruments

$$
\begin{aligned}
& \hat{x}=.2196+.5711 z_{1} \\
& (t) \quad(6.23)
\end{aligned}
$$

$$
\hat{x}=.2140+.2090 z_{2}
$$

( $t$ )
(2.28)

Principles of Econometrics, 3rd Edition
Slide 10-62

### 10.4.4 Numerical Examples Using Simulated

 Data- 10.4.4c Testing Surplus Moment Conditions
- If we use $z_{1}$ and $z_{2}$ as instruments there is one surplus moment condition.
$\hat{e}=.0189+.0881 z_{1}-.1818 z_{2}$
The $R^{2}$ from this regression is .03628 , and $N R^{2}=3.628$. The .05 critical value for the chi-square distribution with one degree of freedom is 3.84 , thus we fail to reject the validity of the surplus moment condition.

Principles of Economerrics, 3rd Edition

### 10.4.4 Numerical Examples Using Simulated

 Data- 10.4.4c Testing Surplus Moment Conditions
- If we use $z_{1}, z_{2}$ and $z_{3}$ as instruments there are two surplus moment conditions.
$\hat{e}=0.0207-.1033 z_{1}-.2355 z_{2}+.1798 z_{3}$
The $R^{2}$ from this regression is .1311 , and $N R^{2}=13.11$. The .05 critical value for the chi-square distribution with two degrees of freedom is
5.99 , thus we reject the validity of the two surplus moment
conditions.
Principles of Economerrics, 3nd Edition
Slide 10-64


### 10.4.5 Specification Tests for the Wage Equation

| Table 10.2 | Hausman Test Auxiliary Regression |  |  |  |
| :--- | :---: | :---: | :---: | ---: |
| Variable | Coefficient | Std. Error | $t$-Statistic | Prob. |
| C | 0.0481 | 0.3946 | 0.1219 | 0.9030 |
| EDUC | 0.0614 | 0.0310 | 1.9815 | 0.0482 |
| EXPER | 0.0442 | 0.0132 | 3.333 | 0.0009 |
| EXPER2 | -0.0009 | 0.0004 | -2.2706 | 0.0237 |
| VHAT | -0.0582 | 0.0348 | -1.6711 | 0.0954 |

- asymptotic properties
- conditional expectation
- endogenous variables
- errors-in-variables
- exogenous variables
- finite sample properties
- Hausman test
- instrumental variable
- instrumental variable estimator
- just identified equations
- large sample properties
- over identified equations
- population moments
- random sampling
- reduced form equation

Principles of Econometrics, 3 rd Edition
Slide 10-66

## Chapter 10 Appendices

- Appendix 104 Conditional and Iterated Expectations
- Appendix 10B The Inconsistency of OLS
n Appendix 10C The Consistency of the IV Estimator
- Appendix 10D The Logic of the Hausman Test


## Keywards

- sample moments
- simultaneous equations bias
- test of surplus moment conditions
- two-stage least squares estimation
- weak instruments
,


## Appendix 10A

Conditional and Iterated Expectations

- 10A.1 Conditional Expectations

$$
E(Y \mid X=x)=\sum_{y} y P(Y=y \mid X=x)=\sum_{y} y f(y \mid x)
$$

$$
\operatorname{var}(Y \mid X=x)=\sum_{y}(y-E(Y \mid X=x))^{2} f(y \mid x)
$$

Appendix 10A
Conditional and Iterated Expectations

- 10A. 2 Iterated Expectations



## Appendix 10A

Conditional and Iterated Expectations

## - 10A. 2 Iterated Expectations

$$
\begin{aligned}
E(Y) & =\sum_{y} y f(y)=\sum_{y} y\left[\sum_{x} f(x, y)\right] \\
& =\sum_{y} y\left[\sum_{x} f(y \mid x) f(x)\right] \\
& =\sum_{x}\left[\sum_{y} y f(y \mid x)\right] f(x) \quad \text { [by changing order of summation] } \\
& =\sum_{x} E(Y \mid X=x) f(x) \\
& =E_{X}[E(Y \mid X)]
\end{aligned}
$$

Appendix 10A
Conditional and Iterated Expectations

- 10A. 2 Iterated Expectations



## Appendix 10A

Conditional and Iterated Expectations

- 10A.3 Regression Model Applications

$$
E\left(e_{i}\right)=E_{x}\left[E\left(e_{i} \mid x_{i}\right)\right]=E_{x}[0]=0
$$

$$
\begin{equation*}
E\left(x_{i} e_{i}\right)=E_{x}\left[x_{i} E\left(e_{i} \mid x_{i}\right)\right]=E_{x}\left[x_{i} 0\right]=0 \tag{10A.6}
\end{equation*}
$$

$\operatorname{cov}\left(x_{i}, e_{i}\right)=E_{x}\left[\left(x_{i}-\mu_{x}\right) E\left(e_{i} \mid x_{i}\right)\right]=E_{x}\left[\left(x_{i}-\mu_{x}\right) 0\right]=0$ (10A.7)

Appendix 10B
The Inconsistency of OLS

$$
y_{i}-E\left(y_{i}\right)=\beta_{2}\left[x_{i}-E\left(x_{i}\right)\right]+e_{i}
$$

$\left[x_{i}-E\left(x_{i}\right)\right]\left[y_{i}-E\left(y_{i}\right)\right]=\beta_{2}\left[x_{i}-E\left(x_{i}\right)\right]^{2}+\left[x_{i}-E\left(x_{i}\right)\right] e_{i}$
$E\left[x_{i}-E\left(x_{i}\right)\right]\left[y_{i}-E\left(y_{i}\right)\right]=\beta_{2} E\left[x_{i}-E\left(x_{i}\right)\right]^{2}+E\left\{\left[x_{i}-E\left(x_{i}\right)\right] e_{i}\right\}$
$\operatorname{cov}(x, y)=\beta_{2} \operatorname{var}(x)+\operatorname{cov}(x, e)$

Principles of Economerrics, 3 rd Edition

## Appendix 10B

The Inconsistency of OLS
$\beta_{2}=\frac{\operatorname{cov}(x, y)}{\operatorname{var}(x)}-\frac{\operatorname{cov}(x, e)}{\operatorname{var}(x)}$
$\beta_{2}=\frac{\operatorname{cov}(x, y)}{\operatorname{var}(x)}$
$b_{2}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) /(N-1)}{\sum\left(x_{i}-\bar{x}\right)^{2} /(N-1)}=\frac{\operatorname{cov}(x, y)}{\operatorname{var}(x)} \quad$ (10B.3)
Principles of Econometrics, 3rd Edition

Appendix 10B
The Inconsistency of OLS
$b_{2}=\frac{\operatorname{cov}(x, y)}{\operatorname{var}(x)} \rightarrow \frac{\operatorname{cov}(x, y)}{\operatorname{var}(x)}=\beta_{2}$
$\beta_{2}=\frac{\operatorname{cov}(x, y)}{\operatorname{var}(x)}-\frac{\operatorname{cov}(x, e)}{\operatorname{var}(x)}$
$b_{2} \rightarrow \frac{\operatorname{cov}(x, y)}{\operatorname{var}(x)}=\beta_{2}+\frac{\operatorname{cov}(x, e)}{\operatorname{var}(x)} \neq \beta_{2}$
Principles of Economerrics. 3rd Edition

Appendix 10C
The Consistency of the $N$ Estimator

$$
\hat{\beta}_{2}=\frac{\sum\left(z_{i}-\bar{z}\right)\left(y_{i}-\bar{y}\right) /(N-1)}{\sum\left(z_{i}-\bar{z}\right)\left(x_{i}-\bar{x}\right) /(N-1)}=\frac{\operatorname{cov}(z, y)}{\operatorname{cov}(z, x)}
$$

$$
\begin{equation*}
\hat{\beta}_{2} \rightarrow \frac{\operatorname{cov}(z, y)}{\operatorname{cov}(z, x)} \tag{10C.2}
\end{equation*}
$$

Principles of Economerrics, 3 rd Edition
Slide 10-76


## Appendix 10D <br> The Logic of the Hausman Test

| $y=\beta_{1}+\beta_{2} x+e$ |
| :---: | :---: |
| $x=\pi_{0}+\pi_{1} z+v$ |
| $x=E(x)+v$ |
| (10D.1) |
| $y=\beta_{1}+\beta_{2} x+e=\beta_{1}+\beta_{2}[E(x)+v]+e$ <br> $=\beta_{1}+\beta_{2} E(x)+\beta_{2} v+e$ |

Principles of Economerrics, 3 rd Edition
Slide 10-78

Appendix 10D
The Logic of the Hausman Test

| $x=\hat{x}+\hat{v}$ |  |
| :---: | :---: |
| $y=\beta_{1}+\beta_{2} x+e=\beta_{1}+\beta_{2}[\hat{x}+\hat{v}]+e$ <br> $=\beta_{1}+\beta_{2} \hat{x}+\beta_{2} \hat{v}+e$ |  |
| $y=\beta_{1}+\beta_{2} \hat{x}+\gamma \hat{v}+e$ | (10D.5) |
| $y=\beta_{1}+\beta_{2} \hat{x}+e$ | (10D.6) |
| Principles of Economerrics, 3rd Edition |  |

## Appendix 10D

The Logic of the Hausman Test

$$
\begin{aligned}
y & =\beta_{1}+\beta_{2} \hat{x}+\gamma \hat{v}+e+\beta_{2} \hat{v}-\beta_{2} \hat{v} \\
& =\beta_{1}+\beta_{2}(\hat{x}+\hat{v})+\left(\gamma-\beta_{2}\right) \hat{v}+e \\
& =\beta_{1}+\beta_{2} x+\delta \hat{v}+e
\end{aligned}
$$


[^0]:    Suppose that there is another variable, $z$, such that

    - $z$ does not have a direct effect on $y$, and thus it does not belong on the right-hand side of the model as an explanatory variable.
    - $z_{i}$ is not correlated with the regression error term $e_{i}$. Variables with this property are said to be exogenous.
    - $z$ is strongly [or at least not weakly] correlated with $x$, the endogenous explanatory variable.

    A variable $z$ with these properties is called an instrumental variable.

[^1]:    These new estimators have the following properties:

    - They are consistent, if $E\left(z_{i} e_{i}\right)=0$.
    - In large samples the instrumental variable estimators have

[^2]:    3. Regress $\hat{e}$ on all the available instruments described in step 1.
    4. Compute $N R^{2}$ from this regression, where $N$ is the sample size and $R^{2}$ is the usual goodness-of-fit measure.

    If all of the surplus moment conditions are valid, then $N R^{2} \sim \chi_{(L-B)}^{2}$ If the value of the test statistic exceeds the $100(1-\alpha)$-percentile from the $\chi_{(L-B)}^{2}$ distribution, then we conclude that at least one of the surplus moment conditions restrictions is not valid.

